Papers

  1. Kiuchi, K., , Shidara, H., Iwatani, Y., and Ogawa, H. (2023) Motor state changes escape behavior of crickets. iScience, 26:107345.
  2. Lu, A., Fukutomi, M., Shidara, H. and Ogawa, H. (2023) Persistence of auditory modulation of wind-induced escape behavior in crickets. Front. Physiol., 14:1153913.
  3. Yamao, H., Shidara, H. and Ogawa, H. (2022) Central projections of cercal giant interneurons in the adult field cricket, Gryllus bimaculatus. J. Comp. Neurol., cne.25336.
  4. Sato, N., Shidara, H. and Ogawa, H. (2022) Roles of neural communication between the brain and thoracic ganglia in the selection and regulation of the cricket escape behavior. J. Insect Physiol., 139:104381.
  5. Ifere, N.O., Sato, N., Shidara, H. and Ogawa, H. (2022) Spatial perception mediated by insect antennal mechanosensory system. J. Exp. Biol., 225: jeb243276.
  6. Sato, N., Shidara, H. and Ogawa, H. (2022) Action selection based on multiple-stimulus aspects in the wind-elicited escape behavior of crickets. Heliyon, 8: e08800.
  7. Ando, N., Shidara, H., Hommaru, N. and Ogawa, H. (2021) Auditory virtual reality for insect phonotaxis. J. Robot. Mechatron., 33:494-504.
  8. Hommaru, N., Shidara,H., Ando, N. and Ogawa.H. (2020) Internal state transition to switch behavioral strategies in cricket phonotaxis. J. Exp. Biol. 223(22) jeb229732.
  9. Maekawa, T., Ohara, K., Zhang, Y., Fukutomi, M., Matsumoto, S., Matsumura, K., Shidara, H., Yamazaki, S.J., Fujisawa, R., Ide, K., Nagaya, N., Yamazaki, K., Koike, S., Miyatake, T., Kimura, D.K., Ogawa, H., Takahashi, S., Yoda, K. (2020) Deep learning-assisted comparative analysis of animal trajectories with DeepHL. Nat. Comm. 11(1) 5316 - 5316..
  10. Sato, N., Shidara,H. and Ogawa.H. (2019) Trade-off between motor performance and behavioural flexibility in the action selection of cricket escape behaviour. Sci. Rep. 9(1) 18112 - 18112..
  11. Sakuma, T., Nishi, K., Kishimoto, K., Nakagawa, K., Karasuyama, M., Umezu, Y., Kajioka, S., Yamazaki, S.J., Kimura, K.D., Matsumoto, S., Yoda, K., Fukutomi, M., Shidara, H., Ogawa, H., Takeuchi, .I.(2019) Efficient learning algorithm for sparse subsequence pattern-based classification and applications to comparative animal trajectory data analysis. Advanced Robotics 33(3-4) 134-152.
  12. Iwatani, Y., Ogawa, H., Shidara, H., Sakura, M., Sato, T., Hojo, M.K., Honma, A., Tsurui, K. (2019) Markerless visual servo control of a servosphere for behavior observation of a variety of wandering animals. Advanced Robotics 33(3-4) 183-194.
  13. Someya, M., Ogawa, H. (2018) Multisensory enhancement of burst activity in an insect auditory neuron. J. Neurophysiol. 120(1) 139-148.
  14. Fukutomi, M., Ogawa, H. (2017) Crickets alter wind-elicited escape strategies depending on acoustic context. Sci. Rep. 7(1) 15158
  15. Sato, N., Shidara, H., Ogawa, H. (2017) Post-molting development of wind-elicited escape behavior in the cricket. J. Insect Physiol. 103: 36-46.
  16. Fukutomi, M., Someya, M. and Ogawa, H. (2015) Auditory modulation of wind-elicited walking behavior in the cricket, Gryllus bimaculatus. J. Exp. Biol., 218:3968-3977.
  17. Ogawa, H. and Mitani, R. (2015) Spatial dynamics of action potentials estimated by dendritic Ca2+ signals in insect projection neurons. BBRC, 467:185-190.
  18. Ogawa, H. and Oka, K. (2015) Direction-specific adaptation in neuronal and behavioral responses of an insect mechanosensory system. J. Neurosci. 35:11644-11655.
  19. Ogawa, H. and Kajita, Y. (2015) Ca2+ imaging of cricket protocerebrum responses to air current stimulation. Neurosci. Lett. 581: 282-286
  20. Shimoi, T., Mizutani, K., Kojima, D., Kitamura, Y., Hotta, K., Ogawa, H. and Oka K. (2014) Identification of oscillatory firing neurons associated with locomotion in theearthworm through synapse imaging. Neurosci. 19: 149-158.
  21. Oe M., and Ogawa, H. (2013) Neural basis of stimulus-angle-dependent motor control of wind-elicited walking behavior in the cricket Gryllus bimaculatus. PLOS ONE 8: e80184.
  22. Matsumoto, S. C., Shidara, H., Matsuda, K., Nakamura, T., Mito, T., Matsumoto, Y., Oka, K. and Ogawa, H. (2013) Targeted gene delivery in the cricket brain, using in vivo electroporation. J. Insect Physiol., 59: 1235-1241.
  23. Ogawa, H., Kawakami, Z. and Yamaguchi, T. (2011) Proprioceptors involved in stinging response of the honeybee, Apis mellifera. J. Insect Physiol. 57: 1358-1367
  24. Ogawa, H., Kagaya, K., Saito, M. and Yamaguchi, T. (2011) Neural mechanism for generating and switching motor patterns of rhythmic movements of ovipo.sitor valves in the cricket. J. Insect Physiol. 57: 326-338
  25. Suzuki, M., Kimura, T., Ogawa, H., Hotta, K. and Oka, K. (2011) Chromatophore Activity during Natural Pattern Expression by the Squid Sepioteuthis lessoniana: Contributions of Miniature Oscillation. PLoS ONE 6: e18244
  26. Baba, Y., Tsukada, A. and Ogawa, H. (2010) Sexual Dimorphism in Shape and Distribution of GABA-Like Immuno-Reactive Neurons in Cricket Terminal Abdominal Ganglion. Zool. Sci. 27: 506-513
  27. Suzuki, M., Kimura, T., Ogawa, H., Hotta, K. and Oka, K. (2009) FMRFamide elicits chromatophore expansion and retraction depending on its type anddevelopment in the squid, Sepioteuthis lessoniana. Invert Neurosci. 9: 185-193
  28. Ogawa, H., Cummins, G. I., Jacobs, G. A. and Oka, K. (2008) Dendritic design implements algorism for extraction of sensory information. J. Neurosci. 28: 4592-4603
  29. Aonuma, H., Kitamura, Y., Niwa, K., Ogawa, H. and Oka, K. (2008) Nitric oxide-cyclic guanosine monophosphate signaling in the local cirtcuit of the cricket abdominal nervous system. Neurosci. 157: 749-761
  30. Ogawa, H., Cummins, G. I., Jacobs, G. A. and Miller, J. P. (2006) Visualization of ensemble activity patterns of mechanosensory afferents in the cricket cercal sensory system with calcium imaging. J. Neurobiol. 66: 293-307
  31. Homma, K., Kitamura, Y., Ogawa, H. and Oka, K. (2006) Serotonin induces the increase in intracellular Ca2+ that enhances neurite outgrowth in PC12 cells via activation of 5-HT3 receptors and voltage-gated calcium channels. J. Neurosci. Res. 84: 316-325
  32. Kubota, T., Shindo, Y., Tokuno, K., Komatsu, H., Ogawa, H., Kudo, S., Kitamura, Y., Suzuki, K., Oka, K. (2005) Mitochondria are intracellular magnesium stores: Investigation by simultaneous fluorescent imagings in PC12 cells. Biochimica et Biophysica Acta. 1744: 19-28
  33. Watanabe, H., Takaya, T., Ogawa, H., Kitamura, Y. and Oka, K. (2005) Influence of mRNA and protein synthesis inhibitors on the long-term memory acquisition of classically conditioned earthworms. Neurobiol. Learning & Memory 43: 151-157
  34. Ogawa, H., Baba, Y. and Oka, K. (2004) Directional sensitivity of dendritic calcium responses to wind stimuli in cricket giant interneurons. Neurosci. Lett. 358: 185-188
  35. Mizutani, K., Shimoi, T., Ogawa, H., Kitamura, Y. and Oka, K. (2004) Modulation of motor patterns by sensory feedback during earthworm locomotion. Neurosci. Res.48: 457-462
  36. Kubota, T., Tokuno, K., Nakagawa, J., Kitamura, Y., Ogawa, H., Suzuki, Y., Suzuki, K. and Oka, K. (2003) Na+/Mg2+ Transporter Acts as a Mg2+ Buffering Mechanism in PC12 cells. Biochem. Biophys. Res. Commun. 303: 332-336
  37. Kitamura, H., Ogawa, H. and Oka, K. (2003) Real-time measurement of nitric oxide using a bio-imaging and an electrochemical technique. TALANTA 61: 717-724
  38. Mizutani, K., Shimoi, T., Kitamura, T., Ogawa, H. and Oka, K. (2003) Identification of two types of synaptic activity in the earthworm nervous system during locomotion. Neurosci.121: 473-478
  39. Ogawa, H., Baba, Y. and Oka, K. (2002) Direction of action potential propagation regulates calcium increases in distal dendrites of the cricket giant interneurons. J. Neurobiol. 53: 44 -56
  40. Ogawa, H., Baba, Y. and Oka, K. (2002) Spike-triggered dendritic calcium transients depend on synaptic activity in the cricket giant interneurons. J. Neurobiol. 50: 234-244
  41. Mizutani, K., Ogawa, H., Saito, J. and Oka, K. (2002) Fictive locomotion induced by octopamine in the earthworm. J. Exp. Biol. 205: 265-271
  42. Ogawa, H., Baba, Y. and Oka, K. (2001) Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket. J. Neurobiol. 46: 301-313
  43. Kitamura, Y., Naganoma, Y., Horita, H., Tsuji, N., Shimizu, R., Ogawa, H. and Oka, K. (2001) Visualization of nitric oxide signaling pathway in the earthworm ventral nerve cord. Neurosci. Res. 40: 175-181
  44. Kitamura, Y., Naganoma, Y., Horita, H., Ogawa, H. and Oka, K. (2001) Serotonin-induced nitric oxide production in the ventral nerve cord of the earthworm, Eisenia fetida. Neurosci. Res. 41: 129-134
  45. Ogawa, H., Baba, Y. and Oka, K. (2000) Spike-dependent calcium influx in dendrites of the cricket giant interneuron. J. Neurobiol. 44: 45-56
  46. Kitamura, Y., Uzawa, T., Oka, K., Komai, Y., Ogawa, H., Takizawa, N., Kobayashi, H. and Tanishita, K. (2000) Microcoaxial electrode for in vivo nitric oxide measurement. Analytical chemistry 72: 2957-2962
  47. Kobayashi, S., Ogawa, H., Fujito, Y. and Ito, E. (2000) Nitric oxide suppresses fictive feeding response in Lymnaea stagnalis. Neurosci. Lett. 285: 209-212
  48. Kobayashi, S., Sadamoto, H., Ogawa, H., Kitamura, Y., Oka, K., Tanishita, K. and Ito, E. (2000) Nitric oxide generation around buccal ganglia accompanying feeding behavior in the pond snail, Lymnaea stagnalis. Neurosci. Res. 38: 27-34
  49. Kojima, S., Ogawa, H., Kouuchi, T., Nidaira, T., Urano, A. and Ito, E. (2000) Neuron-independent Ca2+ signaling in glial cells of snail's brain. Neurosci. 100: 893-900
  50. Ogawa, H., Baba, Y. and Oka, K. (1999) Dendritic Ca2+ transient increase evoked by wind stimulus in the cricket giant interneuron. Neurosci. Lett. 275: 61-64
  51. Shimizu, R., Oka, K., Ogawa, H., Suzuki, K., Saito, J., Mizutani, K. and Tanishita, K. (1999) Optical monitoring of the neural activity evoked by mechanical stimulation in the earthworm nervous system with a fluorescent dye, FM1-43. Neurosci. Lett. 268: 159-162
  52. Ogawa, H., Baba, Y. and Oka, K. (1996) Dendritic Ca2+ response in cercal sensory interneurons of the cricket, Gryllus bimaculatus. Neurosci. Lett. 219: 21-24
  53. Ogawa, H. and Oka, K. (1996) Physiological basis of the earthworm ventral nerve cord. I. Heterogeneity of cellular mechanisms underlying calcium mobilization. Bioimages 4: 137-147
  54. Oka, K. and Ogawa, H. (1996) Physiological basis of the earthworm ventral nerve cord. II. Glutamate receptor subtypes on the median giant fiber. Bioimages 4: 149-156
  55. Ogawa, H., Kawakami, Z. and Yamaguchi, T. (1995) Motor pattern of the stinging response in the honeybee, Apis mellifera. J. Exp. Biol. 198: 39-47
  56. Ogawa, H., Oka, K. and Fujita, S. (1994) Calcium wave propagation in the giant axon of the earthworm. Neurosci. Lett. 179: 45-49
  57. Oka, K., Ogawa, H. and Fujita, S. (1994) Glutamate-induced depolarization in earthworm ventral nerve cord. Neurosci. Lett. 179: 41-44

Books

  1. Ogawa, H. and Miller, J.P. (2016) Optical recording methods ~How to measure of neural activities with Calcium imaging~ Pp 285-302, In: The cricket as a model Organism; Development, Regeneration, and Behavior. Springer Japan.
  2. Baba, Y and Ogawa, H. (2016) Cercal system-mediated anti-predator behaviors. Pp 211-228, In: The cricket as a model Organism; Development, Regeneration, and Behavior. Springer Japan.
  3. Oka, K. and Ogawa, H. (2013) Optical Imaging techniques for investigating the earthwormnervous system and its function. Pp. 89-99, In: Methods in Neuroethological Research. Springer Japan.
  4. Ogawa, H. (2013) In vivo Ca2+ imaging of neuronal activity. Pp 71-87, In: Methods in Neuroethological Research. Springer Japan.
  5. Ogawa, H. and Oka, K. (2013) Methods in neuroethological research (担当:共編者) Springer
  6. 小川宏人 (2013) グリッド細胞,場所細胞,ヘッブ Pp. 132,424,483, In: 行動生物学辞典 東京化学同人
  7. 小川宏人 (2009) 針刺し運動―動き続けるミツバチの針 Pp. 194-212, in 「動物の「動き」の秘密にせまる―運動系の比較生物学」 共立出版
  8. 小川宏人 (2009) コオロギの電気生理学実験 Pp. 58-64, in「身近な動物を使った実験4―ミツバチ,コオロギ,スズメガ」 三共出版
  9. 小川宏人 (2008) コオロギ尾葉の機械感覚システムの機能構成(翻訳) Pp 231-243 in「昆虫ミメティクス ―昆虫の設計に学ぶ―」 NTS
  10. 小川宏人 (2008) 光学計測法が明らかにするニューロン内情報処理機構 Pp 650-656, in「昆虫ミメティクス ―昆虫の設計に学ぶ―」 NTS
  11. 小川宏人 (2008) ミツバチの針刺し機構 Pp 827-830, in「昆虫ミメティクス ―昆虫の設計に学ぶ―」 NTS

Reviews

  1. Ogawa, H. and Miller, J.P. (2016) Optical recording methods ~How to measure of neural activities with Calcium imaging~ Pp 285-302, In: The cricket as a model Organism; Development, Regeneration, and Behavior. Springer Japan.
  2. Baba, Y and Ogawa, H. (2016) Cercal system-mediated anti-predator behaviors. Pp 211-228, In: The cricket as a model Organism; Development, Regeneration, and Behavior. Springer Japan.
  3. Oka, K. and Ogawa, H. (2013) Optical Imaging techniques for investigating the earthwormnervous system and its function. Pp. 89-99, In: Methods in Neuroethological Research. Springer Japan.
  4. Ogawa, H. (2013) In vivo Ca2+ imaging of neuronal activity. Pp 71-87, In: Methods in Neuroethological Research. Springer Japan.
  5. Ogawa, H. and Oka, K. (2013) Methods in neuroethological research (担当:共編者) Springer
  6. 小川宏人 (2013) グリッド細胞,場所細胞,ヘッブ Pp. 132,424,483, In: 行動生物学辞典 東京化学同人
  7. 小川宏人 (2009) 針刺し運動―動き続けるミツバチの針 Pp. 194-212, in 「動物の「動き」の秘密にせまる―運動系の比較生物学」 共立出版
  8. 小川宏人 (2009) コオロギの電気生理学実験 Pp. 58-64, in「身近な動物を使った実験4―ミツバチ,コオロギ,スズメガ」 三共出版
  9. 小川宏人 (2008) コオロギ尾葉の機械感覚システムの機能構成(翻訳) Pp 231-243 in「昆虫ミメティクス ―昆虫の設計に学ぶ―」 NTS
  10. 小川宏人 (2008) 光学計測法が明らかにするニューロン内情報処理機構 Pp 650-656, in「昆虫ミメティクス ―昆虫の設計に学ぶ―」 NTS
  11. 小川宏人 (2008) ミツバチの針刺し機構 Pp 827-830, in「昆虫ミメティクス ―昆虫の設計に学ぶ―」 NTS